
Dr. SNS RAJALAKSHMI COLLEGE OF ARTS & SCIENCE(Autonomous) 

Coimbatore – 49. 

DEPARTMENT OF COMPUTER APPLICATIONS 

COURSE  : OPERATING SYSTEM 

CLASS  : I BCA ‘B’ 

Unit   II 
 

Process Management 

• An operating system executes a variety of programs: 

o Batch system – jobs 

o Time-shared systems – user programs or tasks 

• Process – a program in execution; process execution must progress in sequential fashion 

• A process includes: 

o program counter 

o stack 

o data section 

 

 

Process State 

 

As a process executes, it changes state 

 

o new: The process is being created 

o running: Instructions are being executed 

o waiting: The process is waiting for some event to occur 

o ready: The process is waiting to be assigned to a processor 

o terminated: The process has finished execution 



 

Fig: Process Transition Diagram 

 

PCB: Process Control Block 

 

Information associated with each process 

 

• Process state 

• Program counter 

• CPU registers 

• CPU scheduling information 

• Memory-management information 

• Accounting information 

• I/O status information 

 
 

Fig: PCB 



 

Context Switching 

 

• When CPU switches to another process, the system must save the state of the old 

process and load the saved state for the new process via a context switch 

• Context of a process represented in the PCB 

• Context-switch time is overhead; the system does no useful work while switching 

• Time dependent on hardware support 

Process Scheduling Queues 

 

• Job queue – set of all processes in the system 

• Ready queue – set of all processes residing in main memory, ready and waiting to 

execute 

• Device queues – set of processes waiting for an I/O device 

• Processes migrate among the various queues 

 
 

Fig: Process Scheduling 

 

 

 

Schedulers 

 

• Long-term scheduler (or job scheduler) – selects which processes should be brought 

into the ready queue 

• Short-term scheduler (or CPU scheduler) – selects which process should be executed 

next and allocates CPU 

• Short-term scheduler is invoked very frequently (milliseconds)  (must be fast) 

• Long-term scheduler is invoked very infrequently (seconds, minutes)  (may be slow) 



• The long-term scheduler controls the degree of multiprogramming 

• Processes can be described as either: 

o I/O-bound process – spends more time doing I/O than computations, many 

short CPU bursts 

o CPU-bound process – spends more time doing computations; few very long 

CPU bursts 

Process Creation 

 

• Parent process create children processes, which, in turn create other 

processes, forming a tree of processes 

• Generally, process identified and managed via a process identifier (pid) 

• Resource sharing 

o Parent and children share all resources 

o Children share subset of parent’s resources 

o Parent and child share no resources 

• Execution 

o Parent and children execute concurrently 

o Parent waits until children terminate 

• Address space 

o Child duplicate of parent 

o Child has a program loaded into it 

• UNIX examples 

o fork system call creates new process 

 exec system call used after a fork to replace the process’ memory space with a new program 

 



Process Termination 

 

• Process executes last statement and asks the operating system to delete it (exit) 

o Output data from child to parent (via wait) 

o Process’ resources are deallocated by operating system 

• Parent may terminate execution of children processes (abort) 

o Child has exceeded allocated resources 

o Task assigned to child is no longer required 

o If parent is exiting 

▪ Some operating system do not allow child to continue if its parent 

terminates 

• All children terminated - cascading termination 

Inter Process Communication 

 

• Processes within a system may be independent or cooperating 

• Cooperating process can affect or be affected by other processes, including sharing data 

• Reasons for cooperating processes: 

o Information sharing 

o Computation speedup 

o Modularity 

o Convenience 

• Cooperating processes need interprocess communication (IPC) 

• Two models of IPC 

o Shared memory 

o Message passing 



Fig: Consumer Process 

 

 

Fig:a- Message Passing, b- Shared Memory 

 

Cooperating Process 

 

• Independent process cannot affect or be affected by the execution of another process 

• Cooperating process can affect or be affected by the execution of another process 

• Advantages of process cooperation 

o Information sharing 

o Computation speed-up 

o Modularity 

o Convenience 

IPC-Message Passing 

 

• Mechanism for processes to communicate and to synchronize their actions 

• Message system – processes communicate with each other without resorting to shared 

variables 

• IPC facility provides two operations: 

o send(message) – message size fixed or variable 



o receive(message) 

• If P and Q wish to communicate, they need to: 

o establish a communication link between them 

o exchange messages via send/receive 

• Implementation of communication link 

o physical (e.g., shared memory, hardware bus) 

o logical (e.g., logical properties) 

Direct Communication 

 

 Processes must name each other explicitly: 

o send (P, message) – send a message to process P 

o receive(Q, message) – receive a message from process Q 

 Properties of communication link 

o Links are established automatically 

o A link is associated with exactly one pair of communicating processes 

o Between each pair there exists exactly one link 

 The link may be unidirectional, but is usually bi-directional 

Indirect Communication 

 

 Messages are directed and received from mailboxes (also referred to as ports) 

o Each mailbox has a unique id 

o Processes can communicate only if they share a mailbox 

 Properties of communication link 

o Link established only if processes share a common mailbox 

o A link may be associated with many processes 

o Each pair of processes may share several communication links 

o Link may be unidirectional or bi-directional 

o Operations 

▪ create a new mailbox 

 

▪ send and receive messages through mailbox 



 

▪ destroy a mailbox 

 

o Primitives are defined as: 

▪ send(A, message) – send a message to mailbox A 

 

▪ receive(A, message) – receive a message from mailbox A 

 

o Allow a link to be associated with at most two processes 

o Allow only one process at a time to execute a receive operation 

o Allow the system to select arbitrarily the receiver. Sender is notified who the 

receiver was. 

Synchronisation 

 

 Message passing may be either blocking or non-blocking 

 Blocking is considered synchronous 

o Blocking send has the sender block until the message is received 

o Blocking receive has the receiver block until a message is available 

 Non-blocking is considered asynchronous 

o Non-blocking send has the sender send the message and continue 

o Non-blocking receive has the receiver receive a valid message or null 

 

Buffering 

 

Queue of messages attached to the link; implemented in one of three ways 

 

1. Zero capacity – 0 messages 

Sender must wait for receiver (rendezvous) 

 

2. Bounded capacity – finite length of n messages 

Sender must wait if link full 

3. Unbounded capacity – infinite length 

Sender never waits 

 

Thread 

 A thread is a flow of execution through the process code, with its own program counter, 

system registers and stack. 

 A thread is also called a light weight process. Threads provide a way to improve 

application performance through parallelism. 



 Threads represent a software approach to improving performance of operating system by 

reducing the overhead thread is equivalent to a classical process. 

 

 

Fig: Single threaded vs multithreaded process 

 

Benefits 

 

 Responsiveness 

 Resource Sharing 

 Economy 

 Scalability 

User Threads 

 

 Thread management done by user-level threads library 

 Three primary thread libraries: 

o POSIX Pthreads 

o Win32 threads 

o Java threads 

Kernel Thread 

 

 Supported by the Kernel 

 Examples 

o Windows XP/2000 



o Solaris 

o Linux 

o Tru64 UNIX 

o Mac OS X 

Multithreading Models 

 

 Many-to-One 

o Many user-level threads mapped to single kernel thread 

o Examples: 

o Solaris Green Threads 

o GNU Portable Threads 

 
 

 One-to-One 

o Each user-level thread maps to kernel thread 

o Examples 

o Windows NT/XP/2000 

o Linux 

o Solaris 9 and later 



 

 Many-to-Many 

o Allows many user level threads to be mapped to many kernel threads 

o Allows the operating system to create a sufficient number of kernel 

threads 

o Solaris prior to version 9 

o Windows NT/2000 with the ThreadFiber package 



 
 

 

Threading Issues 

 

 Semantics of fork() and exec() system calls 

 Thread cancellation of target thread 

o Asynchronous or deferred 

 Signal handling 

 Thread pools 

 Thread-specific data 

 Scheduler activations 

Thread Cancellation 

 

 Terminating a thread before it has finished 

 Two general approaches: 

o Asynchronous cancellation terminates the target thread immediately 

o Deferred cancellation allows the target thread to periodically check if it 

should be cancelled 

Thread Pools 

 

 Create a number of threads in a pool where they await work 

 Advantages: 

o Usually slightly faster to service a request with an existing thread than create 

a new thread 

o Allows the number of threads in the application(s) to be bound to the size of the 



pool 

Thread Scheduling 

 

 Distinction between user-level and kernel-level threads 

 Many-to-one and many-to-many models, thread library schedules user-level threads 

to run on LWP 

o Known as process-contention scope (PCS) since scheduling 

competition is within the process 

 Kernel thread scheduled onto available CPU is system-contention scope (SCS) – 

competition among all threads in system 

Difference between Process and Thread 

Process Thread 

Process is heavy weight or resource 

intensive. 

Thread is light weight taking lesser 

resources than a process. 

Process switching needs interaction with 

operating system. 

Thread switching does not need to 

interact with operating system. 

In multiple processing environments each process 

executes the same code but has its own memory 

and file resources. 

 

All threads can share same set of open 

files, child processes. 

If one process is blocked then no other process can 

execute until the first process is unblocked. 

While one thread is blocked and 

waiting, second thread in the same task 

can run. 

Multiple processes without using threads use more 

resources. 

Multiple threaded processes use fewer 

resources. 

In multiple processes each process operates 

independently of the others. 

One thread can read, write or change 

another thread's data. 

 

Process Scheduling 

 Maximum CPU utilization obtained with multiprogramming 

 CPU–I/O Burst Cycle – Process execution consists of a cycle of CPU execution and I/O 

wait 



 CPU burst distribution 

 
 

Fig: CPU burst and I/O burst 

 

CPU Scheduler 

 

 Selects from among the processes in memory that are ready to execute, and allocates 

the CPU to one of them 

 CPU scheduling decisions may take place when a process: 

1. Switches from running to waiting state 

 

2. Switches from running to ready state 

 

3. Switches from waiting to ready 

 

4. Terminates 

 

 Scheduling under 1 and 4 is nonpreemptive 

 All other scheduling is preemptive 

Dispatcher 



 Dispatcher module gives control of the CPU to the process selected by the short- term 

scheduler; this involves: 

o switching context 

o switching to user mode 

o jumping to the proper location in the user program to restart that program 

 Dispatch latency – time it takes for the dispatcher to stop one process and start another 

running 

CPU Scheduling Criteria 

 

 Max CPU utilization 

 Max throughput 

 Min turnaround time 

 Min waiting time 

 Min response time 

CPU Scheduling Algorithms 

 

 

A. First Come First Serve Scheduling 

 

• Schedule the task first which arrives first 

• Non preemptive In nature 

B. Shortest Job First Scheduling 

 

• Associate with each process the length of its next CPU burst. Use these lengths 

to schedule the process with the shortest time 

• SJF is optimal – gives minimum average waiting time for a given set of 

processes 

o The difficulty is knowing the length of the next CPU request 

Priority Scheduling 

 

• A priority number (integer) is associated with each process 

Thread Scheduling: 

Scheduling of threads involves two boundary scheduling, 

 

• Scheduling of user level threads (ULT) to kernel level threads (KLT) via lightweight process 

(LWP) by the application developer. 

https://www.geeksforgeeks.org/threads-and-its-types-in-operating-system/


• Scheduling of kernel level threads by the system scheduler to perform different unique os 

functions. 

 

Lightweight Process (LWP) : 

Light-weight process are threads in the user space that acts as an interface for the ULT to access the 

physical CPU resources. Thread library schedules which thread of a process to run on which LWP and how 

long. 

The number of LWP created by the thread library depends on the type of application. In the case of 

an I/O bound application, the number of LWP depends on the number of user-level threads. 

This is because when an LWP is blocked on an I/O operation, then to invoke the other ULT the 

thread library needs to create and schedule another LWP. Thus, in an I/O bound application, the number of 

LWP is equal to the number of the ULT. In the case of a CPU bound application, it depends only on the 

application. Each LWP is attached to a separate kernel-level thread. 

 

 


